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This paper presents an approach to predict the sensitivity of the sonic boom ground
signatures by numerically solving the augmented Burgers’ equation along with its dis-
crete adjoint. The discrete adjoint equations are derived and solved. The exactness of
the adjoint sensitivities is verified against derivatives obtained using the complex vari-
able approach. Under- and off-track ground signature sensitivities to different design
variables may be obtained efficiently. The formulation of the coupling between boom
adjoint and CFD adjoint is derived and discussed. This formulation represents the first
time in literature that boom propagation and CFD are formally coupled for the purpose
of obtaining gradients of a ground based objective with respect to the aircraft shape
design variables. The coupled formulation is effective in calculating discretely accurate
sensitivities, and should be an extremely useful tool in the design of supersonic cruise
low-boom aircraft.

Nomenclature

c0 Ambient speed of sound, m/s.

Cν Dimensionless dispersion.

D Vector of design variables.

G Ray tube area, m2.

kn Scaling factor due to ray-tube speading and stratification.

L Lagrangian.

ln Objective/cost function for adjoint calculation.

mν Dispersion parameter.

N Number of steps during propagation.

P Dimensionless pressure.

p Pressure waveform during propagation.

pref Reference pressure.

pt Target ground signature.

q, r, t Intermediate pressure waveforms.

t
′

Retarded time.

x Shock formation distance of a plane wave.

αtv0 Thermo-viscous attenuation coefficient.

An, Bn Matrices during the first relaxation process.
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An2 , B
n
2 Matrices during the second relaxation process.

An3 , B
n
3 Matrices during absorption process.

β 1 + γ−1
2 .

δ Diffusion parameter.

Γ Dimensionless thermo-viscous parameter.

γ Ratio of specific heats, 1.4.

λn, βn, γ0,n, γ1,n Adjoint vectors.

ω0 Angular frequency.

ρ0 Ambient density.

σ Non-dimensional distance.

τ Dimensionless time.

τν Dimensionless time for each relaxation mode.

τ ′ Intermediate retarded time coordinate.

θν Dimensionless relaxation time parameter.

I. Introduction and Motivation

Meeting the stringent noise and design constraints for an efficient supersonic aircraft is an extremely
challenging problem. Aircraft designers are actively looking for ways to modify their concepts to meet
the goals associated with efficient supersonic flight. One of the primary ways to achieve improved sonic
boom footprint is through aircraft shaping. The Shaped Sonic Boom Demonstrator (SSBD)1 program
verified, via flight testing, that aircraft shaping is an effective strategy for changing the boom signature on
the ground. Therefore, the main objective in supersonic aircraft design exercises is to obtain an aircraft
concept and shape that will produce a desirable ground signature. Computational Fluid Dynamics (CFD)
shape optimization using adjoint sensitivities is a promising approach, where a desired off-body pressure
distribution is achieved by using the sensitivity of the off-body pressure profiles to the aircraft shape design
variables. However, near-field targets used in the adjoint CFD shape optimization exercises are generally
based on experience, not on the sensitivity to a desired ground signature. Furthermore, near-field targets
or desired off-body pressures are just intermediate waveforms during propagation; the loudness and noise
metrics are based on the ground signatures. Therefore, there is a need for a methodology that takes the
desired ground signatures as input, and generates appropriate near-field waveforms that can be used in
shape optimization studies.

This paper proposes an adjoint methodology based on augmented Burgers’ equation to help the
designer generate near-field waveforms based on desired ground signatures. The desired ground signatures
could be modifications of the baseline ground signature; for example removing some high frequency
content (shocks) or signatures based on experience or signatures that have extremely low perceived
loudness such as variations of a sine wave. The adjoint method allows the computation of the sensitivity of
the ground signature to the initial near-field pressure waveform. A gradient-based optimization procedure
may be used to move the baseline near-field distribution to a new distribution so that the desired ground
signature can be obtained. Computing the sensitivity of the ground signature to the near-field waveforms
can be extremely useful in tailoring the near-field pressure waveform to yield the desired ground signatures.
In addition, by coupling the sonic boom adjoint methodology to an adjoint CFD solver, the sensitivity
of the ground based boom metric with respect to the aircraft shape design variables can be obtained
efficiently. In this study, coupling with FUN3D2 was accomplished and large-scale demonstrations have
also been performed. This coupling allows aircraft shape optimization directly using sonic boom target
ground signatures.

The main goals of this paper are:

• To formulate the boom adjoint problem

• Predict the sensitivities of the ground signature w.r.t. selected design variables
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• Demonstrate the use of adjoint sensitivities to achieve a near-field that produces the desired ground
signature

• Couple the boom adjoint method with an adjoint CFD solver and demonstrate that aircraft shape
optimization can be performed.

II. Mathematics of Boom Adjoint

This section presents the mathematics behind the boom adjoint methodology. The primal problem
refers to the augmented Burgers’ propagation.3 The augmented Burgers’ equation is given in Equation
1.

∂P

∂σ
= P

∂P

∂τ
+

1

Γ

∂2P

∂τ2
+ Σν

Cν
∂2

∂τ2

1 + θν
∂
∂τ

P − 1

2G

∂G

∂σ
P +

1

2ρ0c0

∂(ρ0c0)

∂σ
P (1)

An operator splitting scheme4 is used to solve a set of five equations under the assumption that if
the time step is small, the error induced by splitting is small. The following set of equations are solved
during boom propagation.

∂P

∂σ
= p

∂P

∂τ
[Non-Linearity]

∂P

∂σ
=

1

Γ

∂2P

∂τ2
[Absorption]

∂P

∂σ
= Σν
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∂2

∂τ2
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∂
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P [Molecular Relaxation]

∂P

∂σ
= − 1

2G

∂G

∂σ
P [Ray Tube Spreading]

∂P

∂σ
=

1

2ρ0c0

∂(ρ0c0)

∂σ
P [Atmospheric Stratification] (2)

In these equations, P (σ, τ) = p
pref

, where pref is a reference pressure. The non-dimensional distance

is given by σ = x
x , where x =

ρ0c
3
0

βω0pref
is the shock formation distance of a plane wave with peak pressure

pref . The dimensionless time τ is defined as τ = ω0 t
′. The dimensionless thermo-viscous parameter

is defined as Γ = 1
αtv0 x

, where the thermo-viscous attenuation coefficient is given by: αtv0 =
δω2

0

2c30
. The

dimensionless relaxation time parameter is given by θν = ω0tν . The dimensionless dispersion parameter

is given by Cν =
mντνω

2
0

2c0
x, where mν is a function of the equilibrium and frozen sound speeds in a

particular medium.
The relaxation term can be simplified into Equation 3. Discretization schemes are different for different

propagation phenomena. For the relaxation terms, the pressure is advanced in time using a Crank-
Nicholson scheme for the diffusion term and central differencing scheme for the mixed derivative term.
Equation 4 represents the effect of first relaxation and scaling due to ray tube area (G) spreading and
stratification. The matrices included in these equations are provided in the Appendix. Based on the
discretization scheme used, the matrices are tridiagonal; hence Thomas algorithm5 may be used to solve
the system efficiently. Since there are two relaxation phenomena corresponding to Oxygen and Nitrogen,
Equations 4 and 5 are each solved using their respective values for Cν and θν .

∂p

∂σ
= Cν

∂2p

∂τ2
− θν

∂2p

∂τ∂σ
(3)

Anqn = knB
npn−1 (4)

An2 rn = Bn2 qn (5)

For the absorption equation, a Crank-Nicholson scheme is used for advancing the pressure in time.
Using this discretization scheme, the absorption phenomenon also transforms into a tridiagonal matrix
problem as given in Equation 6, which may be solved to obtain tn.

An3 tn = Bn3 rn (6)
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The non-linear equation is solved using the Poisson solution and is dependent on the solution from
the absorption equation as given in Equation 7. In this equation, tn is a function with two arguments,
propagation distance (σn) and the time coordinate; tn can be thought of as a matrix such that tn,i
represents the σthn row and τ thi column. This retarded time equation is solved via re-interpolation as
shown in Equation 8, where τ ′ is the retarded coordinate given by τ ′n,i = τi− tn,i∆σn, ∆σn = σn−σn−1,
and j is an index such that τ ′n,i−1 < τj < τ ′n,i. Expanding the terms results in the discretized equation
for the non-linear part of the Burgers’ equation primal problem as given in Equation 9.

p(σn, τi) = tn(σn, τi + tn,i∆σn) (7)

pn,j = tn,i−1 +
tn,i − tn,i−1

τ ′n,i − τ ′n,i−1

(
τj − τ ′n,i−1

)
(8)

pn,j = tn,i−1 +
tn,i − tn,i−1

∆τ − (tn,i − tn,i−1)∆σn
[τj − τi−1 + tn,i−1∆σn] = fn,j (9)

The ray tube spreading and atmospheric stratification are simply scaling terms - these are included
in the k factor in Equation 4. For the solution of the augmented Burgers’ equation, Equations 4, 5, 6
and 9 are solved repeatedly, in that order, for n = 1 . . . N time steps and at each stage the pressure is
updated, while also successively updating intermediate values: r, q, and t.

Adjoint

The discrete adjoint equations are derived in this section based on a similar implementation given by
Nielsen et.al.6 A Lagrangian is first written to account for the complete propagation process. Suppose D
is the vector of design variables and ln is the objective function. Then the Lagrangian corresponding to
this objective may be written as in Equation 10. Taking the derivative of the Lagrangian with respect
to D results in Equation 11, where it has been assumed that the objective does not depend explicitly on
the intermediate pressure vectors r, q, and t. Furthermore, the matrices themselves do not vary with the
initial pressure profile, which is the design variable vector chosen in this study. If the design variables
are different, this equation needs to be modified accordingly to construct the discrete adjoint equations.

L(p, q, r, t,D) =

N∑
n=1

ln(p,D)∆σn +

N∑
n=2

γT0,n [Anqn − knBnpn−1] ∆σn +

N∑
n=1

γT1,n [An2 rn −Bnqn] ∆σn

+

N∑
n=1

βTn [An3 tn −Bn3 rn] ∆σn +

N∑
n=1

λTn [pn − fn(tn, D)] ∆σn + γT0,1
[
A1q1 − k1B

1D
]

∆σn

(10)

dL
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=

N∑
n=1

[
∂ln
∂D

+
∂ln
∂pn

∂pn
∂D

]
∆σn +

N∑
n=2

γT0,n

[
An

∂qn
∂D
− knBn

∂pn−1

∂D

]
∆σn

+

N∑
n=1

γT1,n

[
An2

∂rn
∂D
−Bn2

∂qn
∂D

]
∆σn +

N∑
n=1

βTn

[
An3

∂tn
∂D
−Bn3

∂rn
∂D

]
∆σn

+

N∑
n=1

λTn

[
∂pn
∂D
−
∂fnj
∂tn

∂tn
∂D

]
∆σn + γT0,1

[
A1 ∂q1

∂D
− k1B1

]
∆σn

(11)

Collecting the ∂pn
∂D , ∂tn

∂D , ∂rn
∂D and ∂qn

∂D terms from Equation 11 and equating them to zero results in

four adjoint equations that are solved iteratively backwards in time. Collecting all the ∂pn
∂D terms, and

simplifying yields Equation 12. Similarly, collecting the ∂tn
∂D , ∂rn

∂D , and ∂qn
∂D terms, we have Equations

13, 14 and 15 respectively. The adjoint solution process involves solving Equations 12, 13, 14, and 15
iteratively. Equation 12 is solved initially by assuming γ0,N+1 = 0 since there are no “N+1” terms in our
primal propagation problem. The intermediate adjoints are successively updated and solved. The primal
problem is solved first, and relevant pressure vectors are stored for use in the adjoint process.

λTn = − ∂ln
∂pn

+ γT0,n+1kn+1B
n+1 (12)
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βTnA
n
3 = λTn

∂fnj
∂tn

(13)

γT1,nA
n
2 = βTnB

n
3 (14)

γT0,nA
n = γT1,nB

n
2 (15)

In most boom design studies, the objective is to achieve a desired target signature. With this in mind,
the cost function chosen in this study is given in Equation 16. The objective is dependent only on the
final (ground) pressure distribution i.e. ln = 0 ∀ n < N . The analytical derivative of the cost function
(Equation 17) can be used in Equation 12 to start the adjoint calculation process.

lN =
1

2

M∑
i=1

[
piN − pit

]2
dτ (16)

∂lN
∂piN

=
[
piN − pit

]
dτ (17)

Equation 9 may be differentiated to obtain the partial derivative terms needed in the adjoint calcula-
tion. Based on the definition of τ ′, the non-linear residual in Equation 9 may be expanded as Equation
18. Taking the partial derivatives with respect to tni and tni−1 yields Equations 19 and 20 respectively.
These are used to populate the Jacobian matrix in Equation 13.

fnj (tn) = tni−1 +
tni − tni−1

∆τ − (tni − tni−1)∆σn

[
τj − τi−1 + tni−1∆σn

]
(18)

∂fnj
∂tni−1

= 1−
∆τ
[
τj − τi−1 + tni−1∆σn

][
∆τ − (tni − tni−1)∆σn

]2 +
(tni − tni−1)∆σn[

∆τ − (tni − tni−1)∆σn
] (19)

∂fnj
∂tni

=
∆τ
[
τj − τi−1 + tni−1∆σn

][
∆τ − (tni − tni−1)∆σn

]2 (20)

Gradient Calculation

For adjoint solutions satisfying Equations 12-15, the only remaining term is the last term shown in
Equation 21. After the adjoint equations are solved, the last solution of Equation 15 is multiplied with
the scalar factor and the tridiagonal matrix of the first relaxation process to generate the gradient values
needed for optimization.

dL

dD
= −γT0,1k1B

1∆σ1 (21)

III. Implementation and Verification

Implementation of the boom propagation as well as the adjoint process begins by obtaining a CFD
near-field pressure distribution. The propagation process first discretizes this original input waveform
into a desired uniform spacing grid. This transformation or mapping of the CFD near-field to input for
boom propagation is accomplished through linear interpolation followed by zero-padding on both ends.
Therefore, if the initial near-field is represented by p0, the intermediate near-field, pI0, is given in Equation
22, where ps is a scaling factor to account for the conversion to a non-dimensional form used within the
propagation process. These waveforms are plotted in Figures 1(a) and 1(b) respectively. In the previous
section, where sonic boom adjoint methodology and gradient calculation of a cost function are derived,
the design vector D is actually pI0.

From the adjoint methodology, the gradient dL
dpI0

is calculated. In order to obtain modifications to the

near-field waveform, the derivative dL
dp0

is needed. From chain rule differentiation, dL
dp0

= dL
dpI0

dpI0
dp0

. Using

Equations 23 and 24, the Jacobian matrix
dpI0
dp0

can be populated and multiplied with the gradients from
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(a) Original near-field pressure distribution (b) Intermediate near-field pressure distribution

Figure 1. Near-field pressure waveforms for verification of adjoint

the adjoint process to generate the derivatives needed to perform near-field waveform modification for
minimizing a chosen objective or cost function.

pI0,i = ps

[
p0,ii +

p0,ii+1 − p0,ii

X0,ii+1 −X0,ii
(XI

0,i −X0,ii)

]
(22)

dpI0,i
dp0,ii

= ps

[
1−

XI
0,i −X0,ii

X0,ii+1 −X0,ii

]
(23)

dpI0,i
dp0,ii+1

= ps
XI

0,i −X0,ii

X0,ii+1 −X0,ii
(24)

A ground signature can be obtained by using the propagation process. A target ground signature
may then be used to generate a cost function that drives the adjoint process. A sample, arbitrary
target signature along with the original signature is plotted in Figure 2. The target signature deviates
significantly from the original signature for most of the mid-expansion region; the shock in this region is
completely removed in the desired target.

Figure 2. Ground Signature and Target

The adjoint method is run using the cost function described in Equation 16. To verify the accuracy of
the adjoint implementation, comparisons are made with gradients generated through the use of a complex
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variables approach,7,8 which has been applied in several other adjoint gradient verifications. According
to the complex variable derivative approach, the first derivative of a real-valued function f(x), given by
Equation 25, is obtained by expanding the function in a complex-valued Taylor series using an imaginary
perturbation iε. The main advantage of the complex variable method is that true second-order accuracy
is achieved by selecting step sizes without incurring subtractive cancellation errors typically present in
real-valued finite differences. The propagation process is modified to work with complex variables and
the derivatives are calculated. For all the results shown in this study, the imaginary step size was chosen
to be 10−20. Table 1 compares the adjoint gradients dL

dpI0
against the complex variable gradients for some

arbitrary grid point locations. It is seen that the results using adjoint implementation exhibit excellent
agreement with the complex-variable approach, differing at most in the tenth digit. This verifies that the
gradients obtained using the adjoint approach are correct to at least ten digits of numerical precision.

∂f

∂x
=
Im [f(x+ iε)]

ε
+O(ε2) (25)

Table 1. Comparison of the Adjoint and Complex Variable Gradients

Grid Point Adjoint Gradient Complex Variable Gradient

1200 0.00000019721521 0.00000019721423

2000 -0.00000060412713 -0.00000060411918

2576 -0.00000473528829 -0.00000473528673

4012 -0.00000000193716 -0.00000000193713

5001 0.00000000932531 0.00000000932531

6739 -0.00000000021543 -0.00000000021544

8547 -0.00000000000185 -0.00000000000186

The gradient of the cost function with respect to pI0 is depicted in Figure 3. The plot is truncated
around grid point 3000 because beyond this point the gradient values are very close to zero and the plot
remains a flat line. It is seen that the gradients are quite noisy near the front portion of the waveforms.
The same pattern is observed in the complex gradients. The adjoint gradients are multiplied with the
interpolation Jacobians in Equations 23, 24, and the sensitivity of the cost function to the original
CFD near-field is obtained. This is depicted in Figure 4, where the gradient is super-imposed with the
original CFD near-field pressure waveform. In contrast to the intermediate gradient from Figure 3, the
gradient with respect to the CFD near-field does not exhibit oscillatory behavior, which is the result of
linear interpolation. The gradient dL

dp0
can be used to minimize the cost function by changing the CFD

near-field distribution using a gradient-based optimization scheme.

IV. Coupled CFD/Boom Adjoint Formulation

To enable formal design of complex aerospace configurations, the boom-adjoint formulation is coupled
with the NASA Langley unstructured CFD solver FUN3D.2 The FUN3D software solves the compress-
ible and incompressible forms of the steady and unsteady Euler and Reynolds-averaged Navier-Stokes
equations on general static and dynamic mixed-element grid discretizations, which may optionally in-
clude overset grid topologies. The software has been used for a broad class of aerodynamic analysis
and design simulations across the speed range. FUN3D also offers a discretely-consistent adjoint imple-
mentation that has been used to perform mathematically-rigorous design optimization, error estimation,
and formal mesh adaptation for complex geometries and flow-fields in massively parallel computing en-
vironments.6,9 These applications include accurate analysis and design optimization of aircraft concepts
aimed at sonic boom mitigation.10,11 Such simulations have traditionally relied on objective functions
posed in the near-field within 20 body lengths of the vehicle, ultimately yielding an indirect approach
which fails to formally address the pressure signature on the ground. However, the adjoint approach for
the propagation methodology developed here offers an exciting opportunity to formally couple existing
near-field CFD analysis and design capabilities with the methodology used to predict pressure signatures
at the ground. Finally, it should be noted that FUN3D also offers a discretely-consistent forward mode
of differentiation. A scripting procedure12 can be used to automatically convert the baseline source code
to a complex-variable formulation as described above. In this manner, sensitivities of all FUN3D outputs
with respect to any input parameter may be easily evaluated.
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Figure 3. Intermediate gradient dL
dpI0

Figure 4. Gradient dL
dp0

along with p0
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The coupled formulation is described from the perspective of the CFD solver. In this approach, the
interface between FUN3D and boom propagation takes the form of a one-dimensional pressure distribu-
tion p0 evaluated at a fixed distance from the aircraft in the near-field CFD mesh. The CFD solution
determined on the unstructured mesh is used to construct this pressure distribution, which serves as the
input for the boom analysis problem. Given p0, the forward mode of boom analysis evaluates the cost
function lN . The adjoint mode then determines the sensitivity of the cost function to p0, which is a
horizontal vector denoted dlN/dp0.

The relationship between the near-field pressure signature and the CFD solution is described as

p0 = T(Q,X), (26)

where the vectors Q and X represent the CFD solution and mesh, respectively; and T is a transformation
mapping the CFD solution to the desired pressure distribution p0. The Lagrangian for the coupled
formulation is defined as

L (D,Q,X,Λf ,Λg,Λb) = lN + [Λg]
T

G + [Λf ]
T

R + [Λb]
T

(p0 −T) . (27)

Here, Λf and Λg are adjoint variables corresponding to the discrete flow equations R(Q,X,D) = 0 and
grid equations G(X,D) = 0, respectively; Λb is a vector of adjoint variables associated with the boom
interface given by Equation 26; and D is a vector of design variables. In the current study, the design
variables consist of geometric parameters defining the discrete surface grid for the aircraft.

Differentiating the Lagrangian with respect to D and equating the coefficients of ∂p0/∂D, ∂X/∂D,
and ∂Q/∂D to zero yields the following system of adjoint equations:[

dlN
dp0

]T
+ Λb = 0,[

∂R
∂Q

]T
Λf −

[
∂T
∂Q

]T
Λb = 0,[

∂G
∂X

]T
Λg +

[
∂R
∂X

]T
Λf −

[
∂T
∂X

]T
Λb = 0.

(28)

Recall that the vector dlN/dp0 is computed using the adjoint mode of boom analysis as described in
Sections II and III. Assuming that the adjoint variables satisfy Equations 28 and that the transformation
T given by Equation 26 does not explicitly depend on D, the desired sensitivity derivatives of the ground
signature with respect to the aircraft geometry are then calculated as follows:

∂L
∂D = [Λg]

T ∂G
∂D + [Λf ]

T ∂R
∂D . (29)

Note that the computational cost associated with the solution of Equations 28 is similar to that of their
traditional forward-mode counterparts, and the cost required to evaluate Equation 29 is trivial. In this
manner, the approach outlined here ultimately enables a discretely consistent sensitivity analysis to be
performed for the coupled system at the cost of a single forward-mode analysis, even for very large
numbers of design variables.

V. Applications

This section presents a couple of applications using the boom adjoint methodology developed in this
study. Figure 5 depicts the ground signature corresponding to a sample off-body pressure distribution
along with a desired target signature. The target signature varies from the original signature only in a
small region of the mid-body expansion. The adjoint method is used to compute the sensitivity of the
objective with respect to the near-field pressure distribution. A steepest descent method is used to drive
the optimizer to achieve a modified near-field pressure waveform that will result in the desired ground
signature.

The optimizer was run for 2200 iterations; each iteration requires approximately 5 seconds on a 64-bit
Intel Dual Core 2.8 GHz processor with 3GB RAM. When the first case was run, the optimizer’s progress
was extremely slow. The total number of design variables is equal to the number of discrete points in
the original near-field pressure distribution (471 in this case). Out of these, because the target differs
from the ground signature in a limited region, only a few of them are active, while a majority of the
design variables are inactive. This forces the step-size to be small, in turn causing the convergence to
be slow. In order to improve convergence behavior, the number of active variables is decreased to only
consider the relevant ones. Therefore, only the near-field waveform within the boxed region in Figure 6
is allowed to vary based on the adjoint sensitivity information. The other locations are constrained to be
the same as the original near-field waveform. The adjoint calculation and gradient-based optimization
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Figure 5. Ground signature and target comparison

process is run. Figures 6 and 7 show the near-field waveforms and the ground signatures as the iteration
number increases. A significant improvement is seen within the first 100 iterations; after about 2200
iterations the ground signature almost reaches the desired target ground signature. Observation of the
near-field waveforms in Figure 6 shows that to achieve the target signature on the ground, additional small
shocks and expansions are needed in the off-body pressure profile. Based on the propagation process, the
interplay of these shocks and expansions results in the desired target on the ground.

Figure 6. Near-field pressure waveform comparison with limited active variables

Figure 8 compares the convergence behavior of the two cases. It is evident that keeping only the
relevant design variables active significantly improves the convergence behavior of the problem.

A. CFD coupled Implementation

To evaluate the ability of the coupled formulation to design a configuration of interest, a near-field
grid for the aircraft geometry shown in Figure 9 has been generated using the procedures described
elsewhere13,14 and is shown in Figure 10. This grid generation approach is a heuristic technique to

10 of 18

American Institute of Aeronautics and Astronautics



Figure 7. Ground signature comparison with limited active variables

Figure 8. Iteration history comparison
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align the mesh topology a priori with the expected primary off-body shock structures. A more rigorous
adjoint-based approach to mesh adaptation for such problems is described in literature;11 however, the
manual approach used here is sufficient for the current test. The CFD grid utilizes a plane of symmetry
along the centerline and contains 4,197,284 nodes and 24,371,026 tetrahedral elements. The surface
mesh for the aircraft has been parameterized using the packages MASSOUD15 and BANDAIDS.16 These
methodologies are based on free-form deformation techniques which provide a compact set of design
variables describing changes to a discrete surface mesh. Both approaches provide the analytic sensitivities
required by the discrete adjoint formulation of the near-field CFD problem. MASSOUD15 is designed
for use with common aircraft-centric geometries and provides a set of intuitive design variables such as
thickness, camber, twist, shear, and planform parameters. For the current test, this approach has been
used to parameterize the main wing, nacelle, pylon, and horizontal and vertical tail surfaces. To treat
the pod (the axisymmetric body atop the vertical tail) and aft fuselage surfaces, BANDAIDS16 has been
used. This technique is more appropriate for general surface topologies and provides a set of design
variables describing general displacements normal to a surface. For simplicity, the intersections between
aircraft components are held fixed, although this is not a requirement of the formulation. A total of 1384
design variables were used to parameterize the shaded regions of the surface mesh shown in Figure 11,
but only 633 of them are active during the optimization.

Figure 9. Overall view of the configuration

Figure 10. CFD grid
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Figure 11. Parameterized components

Before the coupled CFD/boom implementation can be used for design, the adjoint derivatives need
to be verified against complex sensitivities. For this purpose, FUN3D is run in forward-mode using small
imaginary perturbations of arbitrary shape design variables and the resulting complex near-field signature
is provided for propagation. The boom propagation process with complex input is then run to obtain
the sensitivity of the cost function with respect to the perturbed design variable. This value is compared
against that obtained using the coupled-adjoint implementation. A design variable perturbation and the
corresponding FUN3D complex flow solution are depicted in Figures 12, 13 and 14. Figure 12 depicts the
coutours of the sensitivity (dz/dD) of the vertical mesh deformation (z) with respect to a wing thickness
design variable and the red colored contour region is the mesh that is affected by the perturbation in
that particular wing thickness variable. Figure 13 plots the pressure contours, while Figure 14 is more
interesting as it plots the sensitivity of the pressure field with respect to the wing thickness variable.
This plot suggests that perturbation of the wing thickness as in Figure 12 has a much larger region of
influence on the pressure field.

Table 2 shows the comparison of the sensitivities from both methods. It is seen that the values match
well with each other; however the agreement is not accurate to machine precision. Due to the presence of
a flux limiter, convergence to about 3 orders of magnitude short of machine precision is achieved. Flux
limiting stalls convergence; the agreement between the sensitivities would be more exact if the limiter
was not used and/or convergence of the solution to machine zero could be achieved.

Table 2. Comparison of the Coupled-Adjoint and Coupled-Complex Gradients

Shape Design Variable Coupled-Adjoint Gradient Coupled-Complex Gradient

Wing thickness 0.000016413373890 0.000016413359558

Nacelle thickness 0.000003136786602 0.000003136785870

Htail twist 0.000000528262959 0.000000528262256

Pylon camber 0.000000377252222 0.000000377250467

Vtail thickness 0.000002732768949 0.000002732764644

Fuselage bandaid -0.000002310048595 -0.000002310050818

Pod bandaid -0.000000257553786 -0.000000257553099
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Figure 12. Mesh sensitivity to wing thickness perturbation

Figure 13. Flow-field pressure
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Figure 14. Flow-field pressure sensitivity

The same objective function as before is used to drive the design towards the design target. During
optimization, the raw derivatives, such as those from Table 2, are scaled up by a factor of 1.e6 to ensure
that a unit change in the design variable causes approximately a unit change in the objective value.
Optimization packages such as PORT17 and NPSOL18 that are already integrated with FUN3D were
used for objective minimization. Figure 15 shows the baseline, target and the design ground signatures.
It is seen that the design signature is closer to the desired target than the baseline; however the optimizer
convergence is premature. The reasons for this could be manyfold with the primary ones being:

• The choice of design variables and their ranges are perhaps not sufficient to allow sufficient control
of the geometry changes needed to reach the target ground signature

• The choice of the cost functional may be too restrictive.

The objective value history through several design iterations is depicted in Figure 16. After 5 it-
erations, the optimizer converges on a design that has a ground signature loudness of 80.4, which is
approximately 3 dB lower than the baseline value of 83.5 on a perceived (PLdB) loudness scale.

An optimization of the coupled system such as that shown in Figure 16 requires 18 nearfield flow
solutions and 8 nearfield adjoint solutions using FUN3D. For this study, 80 dual-socket nodes with Intel
Xeon X5670 hex-core processors are used in a fully-dense fashion for a total of 960 computational cores.
Each nearfield flow and adjoint execution uses 400 timesteps to converge the solution approximately 6
orders of magnitude, with each solution requiring roughly 1.5 minutes of wall-clock time. The additional
components required for the optimization such as the forward and adjoint propagation process and the
evaluation of the parameterized CFD surface meshes are serial applications and result in a total wall-clock
time of approximately 1.5 hours for the optimization depicted in Figure 16, although the majority of the
improvements are achieved in half that amount of time.

VI. Discussion

This study demonstrated that a sonic boom adjoint procedure could be used to obtain near-field
pressure distributions that generate desirable ground signatures. This procedure allows the use of direct
design techniques as opposed to the inverse design process generally used in supersonic aircraft design
for sonic boom minimization. The integration of boom adjoint capability with CFD adjoint capability
to obtain the sensitivity of any objective defined at the ground level with respect to the aircraft shape
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Figure 15. Ground signature comparison after CFD shape optimization

Figure 16. Convergence progress of CFD shape optimization
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design variables could be an extremely useful tool because it formally couples CFD with ground signatures
without the need for heuristics in the adaptation or design process. CFD codes such as FUN3D2 and
Cart3D,19 which have adjoint capability, are ideally suited for this integration. Additional studies are
required to identify effective design variables and to generate appropriate cost functionals. The crucial
take-away is that we now have additional and potentially very powerful tools in our toolbox to attack
the problem in several ways. This process can be refined and explored in better and efficient ways in the
near future. Another dimension of research using this formulation stems from the acknowledgment that
multiple near-field waveforms can lead to a single ground signature. This in turn leads to the argument
that optimizers may achieve one of the several possible near-field waveforms which achieve the desired
target, but have poor or sub-optimal off-design performance. An effective strategy to address this is a
multi-point design to achieve robustness across different design and off-design conditions.

Using the adjoint sensitivities, the nature of localization of the shape changes needed to proceed
towards desired ground signatures can be studied and understood. This also allows designers to analyze
and study which shocks in the near-field signature correspond to the desired changes in the ground
signature and provides a better perspective on the propagation process. The sensitivities of the sonic
boom ground signature computed in this paper are with respect to the near-field pressure waveform.
However, sensitivities can be obtained with respect to different design variables such as atmospheric
parameters, or relaxation parameters, etc. This allows the designer to know how the choice of different
propagation related parameters affect the ground signatures. Another interesting application is in the
consideration of the off-design performance. If multiple ground signatures at design/off-design Mach
numbers or under-/off-track azimuths each have their target ground signatures, then multiple adjoint
solutions and their corresponding gradients can be used to simultaneously account for optimizing boom
for design and off-design conditions. This could be extremely useful in multi-point, robust design studies.

VII. Conclusions

A sonic boom ground signature sensitivity method has been developed using the discrete adjoint
approach and augmented Burgers’ equation. The adjoint problem for the augmented Burgers’ equation is
derived, and the relevant sonic boom ground signature sensitivities are computed and verified. Integration
of the boom adjoint method into a high-fidelity CFD and shape optimization environment for designing
low-boom supersonic aircraft concepts has been described. The boom adjoint method and the formal
adjoint-coupling between boom ground signatures and CFD presented in this study are not found in any
existing literature. This study signifies a big step forward in the high-fidelity design capability and has
immense potential for shape tailoring and optimization of supersonic aircraft. Future work will include
refining and enhancing this capability as needed for improving low-boom supersonic aircraft concepts.

Appendix

The tridiagonal matrices for the relaxation processes are:

An, An2 =



1 0 · · ·
0 1 0 · · ·
0 −ακ1 − κ2 (1 + 2ακ1) κ2 − ακ1 · · ·

. . .
. . .

. . .

· · · 0 1 0

· · · 0 1



Bn, Bn2 =



1 0 · · ·
0 1 0 · · ·

α′κ1 − κ2 (1− 2α′κ1) κ2 + α′κ1 · · ·
. . .

. . .
. . .

· · · 0 1 0

· · · 0 1


In the above matrices, κ1 = Cν∆σn

∆τ2 , κ2 = θν
2∆τ , and α′ = 1− α. If using the Crank-Nicholson scheme,

α = 0.5. For thermo-viscous absorption, the matrices are given below with λ = ∆σn
2Γ(∆τ)2
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An3 =


1 0 · · ·
−λ (1 + 2λ) −λ · · ·

. . .
. . .

. . .

· · · 0 1



Bn3 =


1 0 · · ·
λ (1− 2λ) λ · · ·

. . .
. . .

. . .

· · · 0 1


Acknowledgments

This work was supported by the NASA Project entitled ”Multi-fidelity Conceptual Design Process,”
under NASA contract number NNL08AA00B. Boris Diskin and Eric Nielsen were instrumental in the work
concerning coupling and integration with FUN3D, and Bill Jones devoted time and effort into creating a
geometry parameterization for CFD adjoint shape design and verification. All three contributed heavily
to the sections related to CFD integration and the corresponding results and their contributions are much
appreciated. Thanks are due to Dick Campbell for providing a stretched CFD grid. The author would
like to thank Boris Diskin, and Mike Park for discussions related to the adjoint methodology; thanks are
due to Irian Ordaz for some initial discussions. The support received from the entire supersonics airframe
design tools team at NASA Langley Research Center is gratefully acknowledged.

References

1Pawlowski, J. W., Graham, D. H., et al., “Origins and Overview of the Shaped Sonic Boom Demonstration Program,”
AIAA Paper 2005-5, Jan. 2005.

2Nielsen, E. J. et al., “FUN3D: Fully Unstructured Navier-Stokes,” http://fun3d.larc.nasa.gov/, accessed June
2011.

3Rallabhandi, S. K., “Advanced Sonic Boom Prediction Using Augmented Burger’s Equation,” AIAA Paper No.
2011-1278, Jan. 2011.

4Cleveland, R. O., “Propagation of Sonic Booms Through a Real, Stratified Atmosphere,” Ph.D. thesis, University of
Texas at Austin, 1995.

5Conte, S. D. and deBoor, C., Elementary Numerical Analysis, McGraw-Hill, New York, 1972.
6Nielsen, E. J., Diskin, B., and Yamaleev, N. K., “Discrete Adjoint-Based Design Optimization of Unsteady Turbulent

Flows on Dynamic Unstructured Grids,” AIAA Journal , Vol. 48, No. 6, 2010, pp. 1195–1206.
7Lyness, J. N., “Numerical Algorithms Based on the Theory of Complex Variables,” Proceedings of the ACM 22nd

National Conference, 1967, pp. 124–134.
8Lyness, J. N. and Moler, C. B., “Numerical Differentiation of Analytic Functions,” SIAM Journal on Numerical

Analysis, Vol. 4, 1967, pp. 202–210.
9Nielsen, E. J. and Jones, W. T., “Integrated Design of an Active Flow Control System Using a Time-Dependent

Adjoint Method,” Mathematical Modeling of Natural Phenomena, Vol. 6, No. 3, 2011, pp. 141–165.
10Park, M. A. and Darmofal, D. L., “Validation of an Output-Adaptive, Tetrahedral Cut-Cell Method for Sonic Boom

Prediction,” AIAA Journal , Vol. 48, No. 9, 2010, pp. 1928–1945.
11Park, M. A., “Low Boom Configuration Analysis with FUN3D Adjoint Simulation Framework,” AIAA Paper No.

2011-xxxx, June 2011.
12Kleb, W. L., Nielsen, E. J., Gnoffo, P. A., Park, M. A., and Wood, W. A., “Collaborative Software Development in

Support of Fast Adaptive Aerospace Tools (FAAST),” AIAA Paper No. 2003-3978, June 2003.
13Pirzadeh, S., “Three-Dimensional Unstructured Viscous Grids by the Advancing-Layers Method,” AIAA Journal ,

Vol. 34, No. 1, 1996, pp. 43–49.
14Campbell, R. L., Carter, M. B., Deere, K. A., and Waithe, K. A., “Efficient Unstructured Grid Adaptation Methods

for Sonic Boom Prediction,” AIAA Paper 2008-7327, Aug. 2008.
15Samareh, J. A., “A novel shape parameterization approach,” Tech. Rep. NASA TM-1999-209116, NASA Langley

Research Center, Hampton, VA, May 1999.
16Samareh, J. A., “Aerodynamic Shape Optimization based on free-form deformation,” AIAA Paper No. 2004-4630,

2004.
17Blue, J., Fox, P., Fullerton, W., et al., “PORT Mathematical Subroutine Library,” http://www.bell-labs.com/

project/PORT/, accessed June 2011.
18Gill, P. E., Murray, W., et al., “NPSOL: A Fortran Package for Nonlinear Programming,” http://www.

sbsi-sol-optimize.com/, accessed June 2011.
19Nemec, M. and Aftosmis, M., “Parallel Adjoint Framework for Aerodynamic Shape Optimization of Component-

Based Geometry,” AIAA Paper No. 2011-1249, Jan. 2011.

18 of 18

American Institute of Aeronautics and Astronautics

http://fun3d.larc.nasa.gov/
http://www.bell-labs.com/project/PORT/
http://www.bell-labs.com/project/PORT/
http://www.sbsi-sol-optimize.com/
http://www.sbsi-sol-optimize.com/

	Nomenclature
	Introduction and Motivation
	Mathematics of Boom Adjoint
	Implementation and Verification
	Coupled CFD/Boom Adjoint Formulation
	Applications
	CFD coupled Implementation

	Discussion
	Conclusions

